透水型コンクリート用シートがコンクリート圧縮強度に及ぼす影響(シリンダーテストピースの場合)

正会員 ○山本 時生* 同 大村 哲矢**

同 近森 精志***

コンクリート用シート 強度増加 圧縮強度 表面気泡 FEM 解析 有効厚さ

1. はじめに

透水型コンクリートシート(以下, PS)は通気性およ び水分吸収性を有するため、養生後において、 コンクリ ート表層の気泡が減少し, 水セメント比が低くなるため に表面強度が増加することを非破壊試験によって示し, 中性化, 凍結融解などに対する抵抗性が向上するする 1),2) と報告されている。

本研究では PS によって養生されたコンクリートシリン ダーの試験体を製作し、圧縮強度試験を実施して、3次元 弾塑性 FEM 解析を行うことにより、表面強度のみならず 強度増加した深さを推定する。

2. 実験概要

Fig. 1 に試験体型枠の概要, Table 1 にコンクリート調合 表, Table 2 に試験体寸法一覧を示す。脱型後にコンクリ ートを切断して、試験体形状が直径および高さがそれぞ れ100, 200mm となるように、直径および高さがそれぞれ 125, 250mm のプラスチック製モールドを加工して型枠を 製作した。

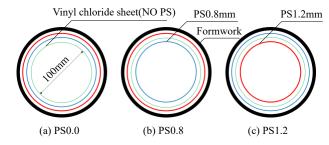
試験体の円形上下面以外における曲面に接するコンク リーシートの厚さを変動要因とし、シートなし、0.8、 1.2mm の3種類の試験体をそれぞれ3体ずつ計9体製作し

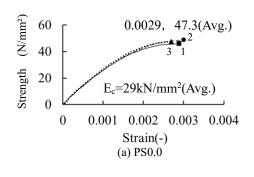
コンクリートは試験室内で45Lの試験材料を攪拌後,速 やかに JIS 規格に準拠して打設した。スランプおよび空気 量はそれぞれ 18.9cm,5.7%であった。気温 20 度の恒温室 で養生し、材齢 28 日後に脱型して圧縮試験を実施しコン プレッソメーターを用いてひずみ度を計測した。また, 表面気泡を写し取り、画像解析し表面気泡量を測定した。

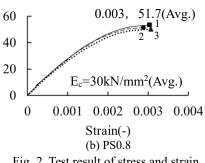
3. 実験結果

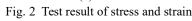
Fig. 2 に応力度ひずみ度関係を示す。ひずみ度の増加に 応力度が増加し、緩やかに塑性化がすすみ最大荷重に達 した。一般的なコンクリート材料試験結果と同様な傾向 を示した。最大の圧縮応力度はそれぞれ3体ずつの平均で、 47.3 から 53.2N/mm²であった。ヤング率はすべての試験体 で同程度で概ね 30kN/mm²であった。

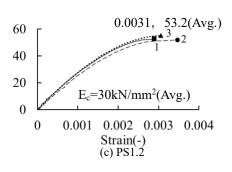
Fig. 3 に PS の厚さ、最大の応力度 (P/A) および増加率 を示す。PS0.0 のシートなしにおける P/A は 47.3 N/mm² (以下, f'_c) であった。シートの厚さが 0.8 から 1.2mm ま



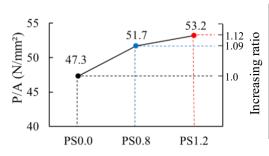

Fig 1. Cross section


Table 1. Test specimen


W/C (%)	s/a (%)	Gmax (mm)	SL (cm)	SLF (cm)	Air (%)	単位質量(kg/m³)			
						W	С	S	G
50.0	47.0	17.04	18.9	302	5.7	175	350	820	944


Table 2. Concrete mixing design

Name	D (mm)	H (mm)	D ave.	H ave.	
PS0.0-1, 2, 3	99.4, 99.2, 99.2	200.9, 201.0, 200.9	99.3	200.9	
PS0.8-1, 2, 3	99.3, 99.4, 99.2	199.8, 200.2, 201.1	99.3	200.4	
PS1.2-1, 2, 3	99.1、98.8、98.9	200.6, 200.2, 200.1	98.9	200.3	



Effect of permeable concrete formwork sheet on concrete compressive strength and its properties

Yamamoto Tokio Ohomura Tetsuya Chikamori Seiji

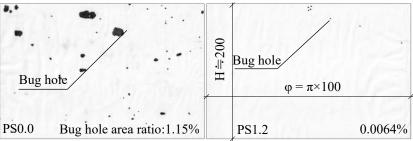


Fig. 3 Maximum compressive stress

で増加すると P/A は 51.7 から 53.2 N/mm²まで増加した。 増加率はそれぞれ 1.09 から 1.12 倍となった。

Fig. 4 に試験体の上下面以外の曲面における表面気泡の 状況と面積比を示す。シートなしでは気泡が多くみられ、一般的なコンクリート材料試験用シリンダーと同様 の傾向がみられ、表面気泡の面積比は 1.15%であった。 一方、シートの厚さが 1.2mm の試験体では小さい気泡が 一部にみられるものの、ほとんど気泡がみられず、表面 気泡の面積比は 0.0064%であった。

4 FEM 解析および結果

Fig. 5 に材料特性および要素分割を示す。PS によるコンクリート表層部の強度上昇厚さ(以下,有効厚さ)を 7,10,20mm と仮定し,有効厚さ部と中央部で異なる材料特性を持つモデルを作成し,3 次元静的弾塑性 FEM 解析を実施した。

Fig. 6 に有効厚さと強度増加後のコンクリート強度(以下, f'_{ec})分布を示す。有効厚さ部における実際のf'_{ec}は破線の曲線のように分布していると考えられるが、簡易

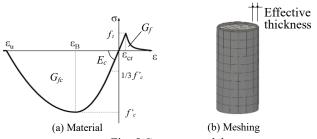


Fig. 5 Concrete model

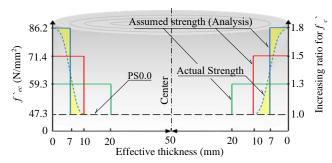


Fig. 6 Effective Strength and compressive strength

Fig. 4 Bug holes on the surface

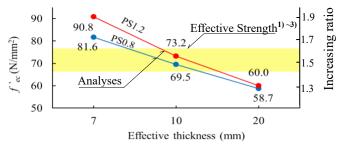


Fig. 7 Effective strength and effective thickness

的に有効厚さ部の f'_{ee} は一定であるとした。 f'_{e} の 1.2 から 1.7 倍およびそれぞれの有効厚さを組み合せたパターンを解析し、荷重が実験結果と一致することを確認した。

Fig. 7 に有効厚さと「最大荷重が実験結果と一致するf' ec」を示す。

既往研究 $^{1),2)$ では PS によって強度増加したコンクリート強度の範囲は黄色のエリアである。本研究では、有効厚さが増加すると f'ec は低下する。PS の厚さが異なっても同様の傾向がみられた。

既往研究 $^{1),2)}$ を考慮すると PS による有効厚さおよびコンクリート強度の増加倍率はそれぞれ 10mm で 1.5 倍であると考えられる。

5 まとめ

透水型コンクリート用シートを用いた試験体を製作し、圧縮試験およびFEM解析を実施して以下の知見が得られた。

- 1) コンクリート用シート厚さの増加にともない、最大荷重は増加する。
- 2) コンクリート用シートを用いると表面気泡は大幅に減少する。
- 3) コンクリート用シートによりコンクリート強度が増加する有効厚さは10mmで強度増加倍率1.5倍であった。
- 1)三島直生,畑中重光,小林広美,犬飼利嗣:透水性型枠を使用したコンクリートの性能改善,コンクリート工学年次論文集,vol.26,363-368,2004
- 2)竹中寛,末岡英二,安田正雪:透水型枠工法を用いたコンクリートの表面品質の改善に関する研究,コンクリート工学年次論文集,vol.31 955-960.2009

^{*}東京科学大学 環境·社会理工学院 建築学系

^{**}東京都市大学 建築都市デザイン学部 准教授・博士(工学)

^{***}アイエスティー(株)

^{*}Graduate Student of Institute of Science Tokyo.

^{**} Assoc. prof., Tokyo City University, Dr. Eng.

^{***}IST Corporation.